Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Perfect Stackelberg Equilibrium (1811.03871v1)

Published 9 Nov 2018 in cs.GT

Abstract: Equilibrium refinements are important in extensive-form (i.e., tree-form) games, where they amend weaknesses of the Nash equilibrium concept by requiring sequential rationality and other beneficial properties. One of the most attractive refinement concepts is quasi-perfect equilibrium. While quasi-perfection has been studied in extensive-form games, it is poorly understood in Stackelberg settings---that is, settings where a leader can commit to a strategy---which are important for modeling, for example, security games. In this paper, we introduce the axiomatic definition of quasi-perfect Stackelberg equilibrium. We develop a broad class of game perturbation schemes that lead to them in the limit. Our class of perturbation schemes strictly generalizes prior perturbation schemes introduced for the computation of (non-Stackelberg) quasi-perfect equilibria. Based on our perturbation schemes, we develop a branch-and-bound algorithm for computing a quasi-perfect Stackelberg equilibrium. It leverages a perturbed variant of the linear program for computing a Stackelberg extensive-form correlated equilibrium. Experiments show that our algorithm can be used to find an approximate quasi-perfect Stackelberg equilibrium in games with thousands of nodes.

Citations (8)

Summary

We haven't generated a summary for this paper yet.