Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Turbo Compressed Sensing for Downlink Massive MIMO-OFDM Channel Estimation (1811.03316v1)

Published 8 Nov 2018 in cs.IT and math.IT

Abstract: Compressed sensing has been employed to reduce the pilot overhead for channel estimation in wireless communication systems. Particularly, structured turbo compressed sensing (STCS) provides a generic framework for structured sparse signal recovery with reduced computational complexity and storage requirement. In this paper, we consider the problem of massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) channel estimation in a frequency division duplexing (FDD) downlink system. By exploiting the structured sparsity in the angle-frequency domain (AFD) and angle-delay domain (ADD) of the massive MIMO-OFDM channel, we represent the channel by using AFD and ADD probability models and design message-passing based channel estimators under the STCS framework. Several STCS-based algorithms are proposed for massive MIMO-OFDM channel estimation by exploiting the structured sparsity. We show that, compared with other existing algorithms, the proposed algorithms have a much faster convergence speed and achieve competitive error performance under a wide range of simulation settings.

Citations (32)

Summary

We haven't generated a summary for this paper yet.