Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Geometry of $CRS$ bi-warped product submanifolds in Sasakian and cosymplectic manifolds (1811.02767v4)

Published 7 Nov 2018 in math.DG

Abstract: In this paper, we prove that there are no proper $CRS$ bi-warped product submanifolds other than contact CR-biwarped products in Sasakian manifolds. On the other hand, we prove that if $M$ is a $CRS$ bi-warped product of the form $M=N_T \times_{f_1}N{n_{1}}\perp\times{f_2} N{n_{2}}_\theta$ in a cosymplectic manifold $\widetilde M$, then its second fundamental form $h$ satisfies the inequality: $$|h|2\geq 2n_1|\nabla(\ln f_1)|2+2n_2(1+2\cot2\theta)|\nabla(\ln f_2)|2,$$ where $N_T,\, N{n_{1}}_\perp$ and $N{n_{2}}_\theta$ are invariant, anti-invariant and proper pointwise slant submanifolds of $\widetilde M$, respectively, and $\nabla(\ln f_1)$ and $\nabla(\ln f_2)$ denote the gradients of $\ln f_{1}$ and $\ln f_{2}$, respectively. Several applications of this inequality are given. At the end, we provide a non-trivial example of bi-warped products satisfying the equality case.

Summary

We haven't generated a summary for this paper yet.