Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel input adaptation via natural type selection (1811.01354v1)

Published 4 Nov 2018 in cs.IT and math.IT

Abstract: We consider a channel-independent decoder which is for i.i.d. random codes what the maximum mutual-information decoder is for constant composition codes. We show that this decoder results in exactly the same i.i.d. random coding error exponent and almost the same correct-decoding exponent for a given codebook distribution as the maximum-likelihood decoder. We propose an algorithm for computation of the optimal correct-decoding exponent which operates on the corresponding expression for the channel-independent decoder. The proposed algorithm comes in two versions: computation at a fixed rate and for a fixed slope. The fixed-slope version of the algorithm presents an alternative to the Arimoto algorithm for computation of the random coding exponent function in the correct-decoding regime. The fixed-rate version of the computation algorithm translates into a stochastic iterative algorithm for adaptation of the i.i.d. codebook distribution to a discrete memoryless channel in the limit of large block length. The adaptation scheme uses i.i.d. random codes with the channel-independent decoder and relies on one bit of feedback per transmitted block. The communication itself is assumed reliable at a constant rate $R$. In the end of the iterations the resulting codebook distribution guarantees reliable communication for all rates below $R + \Delta$ for some predetermined parameter of decoding confidence $\Delta > 0$, provided that $R + \Delta$ is less than the channel capacity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.