Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning of Interpretable Dialog Models (1811.01012v1)

Published 2 Nov 2018 in cs.AI and cs.CL

Abstract: Recently several deep learning based models have been proposed for end-to-end learning of dialogs. While these models can be trained from data without the need for any additional annotations, it is hard to interpret them. On the other hand, there exist traditional state based dialog systems, where the states of the dialog are discrete and hence easy to interpret. However these states need to be handcrafted and annotated in the data. To achieve the best of both worlds, we propose Latent State Tracking Network (LSTN) using which we learn an interpretable model in unsupervised manner. The model defines a discrete latent variable at each turn of the conversation which can take a finite set of values. Since these discrete variables are not present in the training data, we use EM algorithm to train our model in unsupervised manner. In the experiments, we show that LSTN can help achieve interpretability in dialog models without much decrease in performance compared to end-to-end approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dhiraj Madan (11 papers)
  2. Dinesh Raghu (19 papers)
  3. Gaurav Pandey (51 papers)
  4. Sachindra Joshi (32 papers)