Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysing Dropout and Compounding Errors in Neural Language Models (1811.00998v1)

Published 2 Nov 2018 in cs.CL, cs.LG, and cs.NE

Abstract: This paper carries out an empirical analysis of various dropout techniques for LLMling, such as Bernoulli dropout, Gaussian dropout, Curriculum Dropout, Variational Dropout and Concrete Dropout. Moreover, we propose an extension of variational dropout to concrete dropout and curriculum dropout with varying schedules. We find these extensions to perform well when compared to standard dropout approaches, particularly variational curriculum dropout with a linear schedule. Largest performance increases are made when applying dropout on the decoder layer. Lastly, we analyze where most of the errors occur at test time as a post-analysis step to determine if the well-known problem of compounding errors is apparent and to what end do the proposed methods mitigate this issue for each dataset. We report results on a 2-hidden layer LSTM, GRU and Highway network with embedding dropout, dropout on the gated hidden layers and the output projection layer for each model. We report our results on Penn-TreeBank and WikiText-2 word-level LLMling datasets, where the former reduces the long-tail distribution through preprocessing and one which preserves rare words in the training and test set.

Citations (1)

Summary

We haven't generated a summary for this paper yet.