Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attainable values for the Assouad dimension of projections (1811.00951v3)

Published 2 Nov 2018 in math.MG and math.CA

Abstract: We prove that for an arbitrary upper semi-continuous function $\phi\colon G(1,2) \to [0,1]$ there exists a compact set $F$ in the plane such that $\dim_{\textrm{A}} \pi F = \phi(\pi)$ for all $\pi \in G(1,2)$, where $\pi F$ is the orthogonal projection of $F$ onto the line $\pi$. In particular, this shows that the Assouad dimension of orthogonal projections can take on any finite or countable number of distinct values on a set of projections with positive measure. It was previously known that two distinct values could be achieved with positive measure. Recall that for other standard notions of dimension, such as the Hausdorff, packing, upper or lower box dimension, a single value occurs almost surely.

Summary

We haven't generated a summary for this paper yet.