Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connections between physics, mathematics and deep learning (1811.00576v3)

Published 1 Nov 2018 in cs.LG, hep-th, and stat.ML

Abstract: Starting from the Fermat's principle of least action, which governs classical and quantum mechanics and from the theory of exterior differential forms, which governs the geometry of curved manifolds, we show how to derive the equations governing neural networks in an intrinsic, coordinate invariant way, where the loss function plays the role of the Hamiltonian. To be covariant, these equations imply a layer metric which is instrumental in pretraining and explains the role of conjugation when using complex numbers. The differential formalism also clarifies the relation of the gradient descent optimizer with Aristotelian and Newtonian mechanics and why large learning steps break the logic of the linearization procedure. We hope that this formal presentation of the differential geometry of neural networks will encourage some physicists to dive into deep learning, and reciprocally, that the specialists of deep learning will better appreciate the close interconnection of their subject with the foundations of classical and quantum field theory.

Summary

We haven't generated a summary for this paper yet.