Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A representation of joint moments of CUE characteristic polynomials in terms of Painleve functions (1811.00064v2)

Published 31 Oct 2018 in math-ph, math.MP, math.PR, and nlin.SI

Abstract: We establish a representation of the joint moments of the characteristic polynomial of a CUE random matrix and its derivative in terms of a solution of the sigma-Painleve V equation. The derivation involves the analysis of a formula for the joint moments in terms of a determinant of generalised Laguerre polynomials using the Riemann-Hilbert method. We use this connection with the sigma-Painleve V equation to derive explicit formulae for the joint moments and to show that in the large-matrix limit the joint moments are related to a solution of the sigma-Painleve III equation. Using the conformal block expansion of the tau-functions associated with the sigma-Painleve V and the sigma-Painleve III equations leads to general conjectures for the joint moments.

Summary

We haven't generated a summary for this paper yet.