Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Dimension-wise Multivariate Orthogonal Polynomials in General Probability Spaces (1810.12113v1)

Published 26 Oct 2018 in math.NA and math.PR

Abstract: This paper puts forward a new generalized polynomial dimensional decomposition (PDD), referred to as GPDD, comprising hierarchically ordered measure-consistent multivariate orthogonal polynomials in dependent random variables. Unlike the existing PDD, which is valid strictly for independent random variables, no tensor-product structure is assumed or required. Important mathematical properties of GPDD are studied by constructing dimension-wise decomposition of polynomial spaces, deriving statistical properties of random orthogonal polynomials, demonstrating completeness of orthogonal polynomials for prescribed assumptions, and proving mean-square convergence to the correct limit, including when there are infinitely many random variables. The GPDD approximation proposed should be effective in solving high-dimensional stochastic problems subject to dependent variables.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)