Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning with Analytical Models (1810.11772v2)

Published 28 Oct 2018 in cs.PF, cs.DC, and cs.LG

Abstract: To understand and predict the performance of scientific applications, several analytical and machine learning approaches have been proposed, each having its advantages and disadvantages. In this paper, we propose and validate a hybrid approach for performance modeling and prediction, which combines analytical and machine learning models. The proposed hybrid model aims to minimize prediction cost while providing reasonable prediction accuracy. Our validation results show that the hybrid model is able to learn and correct the analytical models to better match the actual performance. Furthermore, the proposed hybrid model improves the prediction accuracy in comparison to pure machine learning techniques while using small training datasets, thus making it suitable for hardware and workload changes.

Citations (7)

Summary

We haven't generated a summary for this paper yet.