Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectrogram-channels u-net: a source separation model viewing each channel as the spectrogram of each source (1810.11520v2)

Published 26 Oct 2018 in cs.SD, cs.LG, eess.AS, eess.SP, and stat.ML

Abstract: Sound source separation has attracted attention from Music Information Retrieval(MIR) researchers, since it is related to many MIR tasks such as automatic lyric transcription, singer identification, and voice conversion. In this paper, we propose an intuitive spectrogram-based model for source separation by adapting U-Net. We call it Spectrogram-Channels U-Net, which means each channel of the output corresponds to the spectrogram of separated source itself. The proposed model can be used for not only singing voice separation but also multi-instrument separation by changing only the number of output channels. In addition, we propose a loss function that balances volumes between different sources. Finally, we yield performance that is state-of-the-art on both separation tasks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.