Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HYPE: Massive Hypergraph Partitioning with Neighborhood Expansion (1810.11319v4)

Published 26 Oct 2018 in cs.DC, cs.DS, and cs.SI

Abstract: Many important real-world applications-such as social networks or distributed data bases-can be modeled as hypergraphs. In such a model, vertices represent entities-such as users or data records-whereas hyperedges model a group membership of the vertices-such as the authorship in a specific topic or the membership of a data record in a specific replicated shard. To optimize such applications, we need an efficient and effective solution to the NP-hard balanced k-way hypergraph partitioning problem. However, existing hypergraph partitioners that scale to very large graphs do not effectively exploit the hypergraph structure when performing the partitioning decisions. We propose HYPE, a hypergraph partitionier that exploits the neighborhood relations between vertices in the hypergraph using an efficient implementation of neighborhood expansion. HYPE improves partitioning quality by up to 95% and reduces runtime by up to 39% compared to streaming partitioning.

Citations (24)

Summary

We haven't generated a summary for this paper yet.