Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication Efficient Parallel Algorithms for Optimization on Manifolds (1810.11155v3)

Published 26 Oct 2018 in stat.ML and cs.LG

Abstract: The last decade has witnessed an explosion in the development of models, theory and computational algorithms for "big data" analysis. In particular, distributed computing has served as a natural and dominating paradigm for statistical inference. However, the existing literature on parallel inference almost exclusively focuses on Euclidean data and parameters. While this assumption is valid for many applications, it is increasingly more common to encounter problems where the data or the parameters lie on a non-Euclidean space, like a manifold for example. Our work aims to fill a critical gap in the literature by generalizing parallel inference algorithms to optimization on manifolds. We show that our proposed algorithm is both communication efficient and carries theoretical convergence guarantees. In addition, we demonstrate the performance of our algorithm to the estimation of Fr\'echet means on simulated spherical data and the low-rank matrix completion problem over Grassmann manifolds applied to the Netflix prize data set.

Citations (4)

Summary

We haven't generated a summary for this paper yet.