Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy Blackbox Optimization with Multi-Fidelity Queries: A Tree Search Approach (1810.10482v1)

Published 24 Oct 2018 in stat.ML and cs.LG

Abstract: We study the problem of black-box optimization of a noisy function in the presence of low-cost approximations or fidelities, which is motivated by problems like hyper-parameter tuning. In hyper-parameter tuning evaluating the black-box function at a point involves training a learning algorithm on a large data-set at a particular hyper-parameter and evaluating the validation error. Even a single such evaluation can be prohibitively expensive. Therefore, it is beneficial to use low-cost approximations, like training the learning algorithm on a sub-sampled version of the whole data-set. These low-cost approximations/fidelities can however provide a biased and noisy estimate of the function value. In this work, we incorporate the multi-fidelity setup in the powerful framework of noisy black-box optimization through tree-like hierarchical partitions. We propose a multi-fidelity bandit based tree-search algorithm for the problem and provide simple regret bounds for our algorithm. Finally, we validate the performance of our algorithm on real and synthetic datasets, where it outperforms several benchmarks.

Citations (22)

Summary

We haven't generated a summary for this paper yet.