Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dental pathology detection in 3D cone-beam CT (1810.10309v1)

Published 24 Oct 2018 in cs.CV

Abstract: Cone-beam computed tomography (CBCT) is a valuable imaging method in dental diagnostics that provides information not available in traditional 2D imaging. However, interpretation of CBCT images is a time-consuming process that requires a physician to work with complicated software. In this work we propose an automated pipeline composed of several deep convolutional neural networks and algorithmic heuristics. Our task is two-fold: a) find locations of each present tooth inside a 3D image volume, and b) detect several common tooth conditions in each tooth. The proposed system achieves 96.3\% accuracy in tooth localization and an average of 0.94 AUROC for 6 common tooth conditions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.