Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Training neural audio classifiers with few data (1810.10274v3)

Published 24 Oct 2018 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: We investigate supervised learning strategies that improve the training of neural network audio classifiers on small annotated collections. In particular, we study whether (i) a naive regularization of the solution space, (ii) prototypical networks, (iii) transfer learning, or (iv) their combination, can foster deep learning models to better leverage a small amount of training examples. To this end, we evaluate (i-iv) for the tasks of acoustic event recognition and acoustic scene classification, considering from 1 to 100 labeled examples per class. Results indicate that transfer learning is a powerful strategy in such scenarios, but prototypical networks show promising results when one does not count with external or validation data.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.