Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AUNet: Attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms (1810.10151v3)

Published 24 Oct 2018 in cs.CV

Abstract: Mammography is one of the most commonly applied tools for early breast cancer screening. Automatic segmentation of breast masses in mammograms is essential but challenging due to the low signal-to-noise ratio and the wide variety of mass shapes and sizes. Existing methods deal with these challenges mainly by extracting mass-centered image patches manually or automatically. However, manual patch extraction is time-consuming and automatic patch extraction brings errors that could not be compensated in the following segmentation step. In this study, we propose a novel attention-guided dense-upsampling network (AUNet) for accurate breast mass segmentation in whole mammograms directly. In AUNet, we employ an asymmetrical encoder-decoder structure and propose an effective upsampling block, attention-guided dense-upsampling block (AU block). Especially, the AU block is designed to have three merits. Firstly, it compensates the information loss of bilinear upsampling by dense upsampling. Secondly, it designs a more effective method to fuse high- and low-level features. Thirdly, it includes a channel-attention function to highlight rich-information channels. We evaluated the proposed method on two publicly available datasets, CBIS-DDSM and INbreast. Compared to three state-of-the-art fully convolutional networks, AUNet achieved the best performances with an average Dice similarity coefficient of 81.8% for CBIS-DDSM and 79.1% for INbreast.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hui Sun (83 papers)
  2. Cheng Li (1094 papers)
  3. Boqiang Liu (2 papers)
  4. Hairong Zheng (71 papers)
  5. David Dagan Feng (13 papers)
  6. Shanshan Wang (167 papers)
Citations (114)

Summary

We haven't generated a summary for this paper yet.