Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Sparse DNNs with Improved Adversarial Robustness (1810.09619v2)

Published 23 Oct 2018 in cs.LG, cs.CR, cs.CV, cs.NE, and stat.ML

Abstract: Deep neural networks (DNNs) are computationally/memory-intensive and vulnerable to adversarial attacks, making them prohibitive in some real-world applications. By converting dense models into sparse ones, pruning appears to be a promising solution to reducing the computation/memory cost. This paper studies classification models, especially DNN-based ones, to demonstrate that there exists intrinsic relationships between their sparsity and adversarial robustness. Our analyses reveal, both theoretically and empirically, that nonlinear DNN-based classifiers behave differently under $l_2$ attacks from some linear ones. We further demonstrate that an appropriately higher model sparsity implies better robustness of nonlinear DNNs, whereas over-sparsified models can be more difficult to resist adversarial examples.

Citations (146)

Summary

We haven't generated a summary for this paper yet.