Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a context-dependent numerical data quality evaluation framework (1810.09399v1)

Published 22 Oct 2018 in cs.DB

Abstract: This paper focuses on numeric data, with emphasis on distinct characteristics like varying significance, unstructured format, mass volume and real-time processing. We propose a novel, context-dependent valuation framework specifically devised to assess quality in numeric datasets. Our framework uses eight relevant data quality dimensions, and provide a simple metric to evaluate dataset quality along each dimension. We argue that the proposed set of dimensions and corresponding metrics adequately captures the unique quality antipatterns that are typically associated with numerical data. The introduction of our framework is part of a wider research effort that aims at developing an articulated numerical data quality improvement approach for Oil and Gas exploration and production workflows that is based on artificial intelligence techniques.

Citations (4)

Summary

We haven't generated a summary for this paper yet.