Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AST-Based Deep Learning for Detecting Malicious PowerShell (1810.09230v1)

Published 3 Oct 2018 in cs.SE, cs.LG, and stat.ML

Abstract: With the celebrated success of deep learning, some attempts to develop effective methods for detecting malicious PowerShell programs employ neural nets in a traditional natural language processing setup while others employ convolutional neural nets to detect obfuscated malicious commands at a character level. While these representations may express salient PowerShell properties, our hypothesis is that tools from static program analysis will be more effective. We propose a hybrid approach combining traditional program analysis (in the form of abstract syntax trees) and deep learning. This poster presents preliminary results of a fundamental step in our approach: learning embeddings for nodes of PowerShell ASTs. We classify malicious scripts by family type and explore embedded program vector representations.

Citations (40)

Summary

We haven't generated a summary for this paper yet.