Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Polynomial Time MCMC Method for Sampling from Continuous DPPs (1810.08867v1)

Published 20 Oct 2018 in cs.LG, cs.DS, and stat.ML

Abstract: We study the Gibbs sampling algorithm for continuous determinantal point processes. We show that, given a warm start, the Gibbs sampler generates a random sample from a continuous $k$-DPP defined on a $d$-dimensional domain by only taking $\text{poly}(k)$ number of steps. As an application, we design an algorithm to generate random samples from $k$-DPPs defined by a spherical Gaussian kernel on a unit sphere in $d$-dimensions, $\mathbb{S}{d-1}$ in time polynomial in $k,d$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.