Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal hedging under fast-varying stochastic volatility (1810.08337v3)

Published 19 Oct 2018 in q-fin.PR and math.PR

Abstract: In a market with a rough or Markovian mean-reverting stochastic volatility there is no perfect hedge. Here it is shown how various delta-type hedging strategies perform and can be evaluated in such markets in the case of European options. A precise characterization of the hedging cost, the replication cost caused by the volatility fluctuations, is presented in an asymptotic regime of rapid mean reversion for the volatility fluctuations. The optimal dynamic asset based hedging strategy in the considered regime is identified as the so-called practitioners' delta hedging scheme. It is moreover shown that the performances of the delta-type hedging schemes are essentially independent of the regularity of the volatility paths in the considered regime and that the hedging costs are related to a vega risk martingale whose magnitude is proportional to a new market risk parameter. It is also shown via numerical simulations that the proposed hedging schemes which derive from option price approximations in the regime of rapid mean reversion, are robust: thepractitioners' delta hedging scheme that is identified as being optimal by our asymptotic analysis when the mean reversion time is small seems to be optimal with arbitrary mean reversion times.

Summary

We haven't generated a summary for this paper yet.