Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduction of Parameter Redundancy in Biaffine Classifiers with Symmetric and Circulant Weight Matrices (1810.08307v1)

Published 18 Oct 2018 in cs.CL

Abstract: Currently, the biaffine classifier has been attracting attention as a method to introduce an attention mechanism into the modeling of binary relations. For instance, in the field of dependency parsing, the Deep Biaffine Parser by Dozat and Manning has achieved state-of-the-art performance as a graph-based dependency parser on the English Penn Treebank and CoNLL 2017 shared task. On the other hand, it is reported that parameter redundancy in the weight matrix in biaffine classifiers, which has O(n2) parameters, results in overfitting (n is the number of dimensions). In this paper, we attempted to reduce the parameter redundancy by assuming either symmetry or circularity of weight matrices. In our experiments on the CoNLL 2017 shared task dataset, our model achieved better or comparable accuracy on most of the treebanks with more than 16% parameter reduction.

Summary

We haven't generated a summary for this paper yet.