Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Convolutional Autoencoder Approach to Learn Volumetric Shape Representations for Brain Structures (1810.07746v1)

Published 17 Oct 2018 in cs.CV

Abstract: We propose a novel machine learning strategy for studying neuroanatomical shape variation. Our model works with volumetric binary segmentation images, and requires no pre-processing such as the extraction of surface points or a mesh. The learned shape descriptor is invariant to affine transformations, including shifts, rotations and scaling. Thanks to the adopted autoencoder framework, inter-subject differences are automatically enhanced in the learned representation, while intra-subject variances are minimized. Our experimental results on a shape retrieval task showed that the proposed representation outperforms a state-of-the-art benchmark for brain structures extracted from MRI scans.

Citations (3)

Summary

We haven't generated a summary for this paper yet.