Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning in Non-convex Games with an Optimization Oracle (1810.07362v7)

Published 17 Oct 2018 in cs.LG and stat.ML

Abstract: We consider online learning in an adversarial, non-convex setting under the assumption that the learner has an access to an offline optimization oracle. In the general setting of prediction with expert advice, Hazan et al. (2016) established that in the optimization-oracle model, online learning requires exponentially more computation than statistical learning. In this paper we show that by slightly strengthening the oracle model, the online and the statistical learning models become computationally equivalent. Our result holds for any Lipschitz and bounded (but not necessarily convex) function. As an application we demonstrate how the offline oracle enables efficient computation of an equilibrium in non-convex games, that include GAN (generative adversarial networks) as a special case.

Citations (57)

Summary

We haven't generated a summary for this paper yet.