Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Segment Corneal Tissue Interfaces in OCT Images (1810.06612v4)

Published 15 Oct 2018 in cs.CV

Abstract: Accurate and repeatable delineation of corneal tissue interfaces is necessary for surgical planning during anterior segment interventions, such as Keratoplasty. Designing an approach to identify interfaces, which generalizes to datasets acquired from different Optical Coherence Tomographic (OCT) scanners, is paramount. In this paper, we present a Convolutional Neural Network (CNN) based framework called CorNet that can accurately segment three corneal interfaces across datasets obtained with different scan settings from different OCT scanners. Extensive validation of the approach was conducted across all imaged datasets. To the best of our knowledge, this is the first deep learning based approach to segment both anterior and posterior corneal tissue interfaces. Our errors are 2x lower than non-proprietary state-of-the-art corneal tissue interface segmentation algorithms, which include image analysis-based and deep learning approaches.

Citations (18)

Summary

We haven't generated a summary for this paper yet.