Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The nonlinear Schrödinger equations with harmonic potential in modulation spaces (1810.06556v1)

Published 15 Oct 2018 in math.AP

Abstract: We study nonlinear Schr\"odinger $i\partial_tu-Hu=F(u)$ (NLSH) equation associated to harmonic oscillator $H=-\Delta +|x|2$ in modulation spaces $M{p,q}.$ When $F(u)= (|x|{-\gamma}\ast |u|2)u, $ we prove global well-posedness for (NLSH) in modulation spaces $M{p,p}(\mathbb Rd)$ $ (1\leq p < 2d/(d+\gamma), 0<\gamma< \min { 2, d/2}).$ When $F(u)= (K\ast |u|{2k})u$ with $K\in \mathcal{F}Lq $ (Fourier-Lebesgue spaces) or $M{\infty,1}$ (Sj\"ostrand's class) or $M{1, \infty},$ some local and global well-posedness for (NLSH) are obtained in some modulation spaces. When $F$ is real entire and $F(0)=0$, we prove local well-posedness for (NLSH) in $M{1,1}.$ As a consequence, we can get local and global well-posedness for (NLSH) in a function spaces$-$which are larger than usual $Lp_s-$Sobolev spaces.

Summary

We haven't generated a summary for this paper yet.