Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Fredholm property for groupoids is a local property (1810.06525v1)

Published 15 Oct 2018 in math.OA

Abstract: Fredholm Lie groupoids were introduced by Carvalho, Nistor and Qiao as a tool for the study of partial differential equations on open manifolds. This article extends the definition to the setting of locally compact groupoids and proves that \enquote{the Fredholm property is local}. Let $\mathcal{G} \rightrightarrows X$ be a topological groupoid and $(U_i){i\in I}$ be an open cover of $X$. We show that $\mathcal{G}$ is a Fredholm groupoid if, and only if, its reductions $\mathcal{G}{U_i}{U_i}$ are Fredholm groupoids for all $i \in I$. We exploit this criterion to show that many groupoids encountered in practical applications are Fredholm. As an important intermediate result, we use an induction argument to show that the primitive spectrum of $C*(\mathcal{G})$ can be written as the union of the primitive spectra of all $C*(\mathcal{G}|_{U_i})$, for $i \in I$.

Summary

We haven't generated a summary for this paper yet.