Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The log-Brunn-Minkowski inequality in $\mathbb{R}^3$ (1810.05775v1)

Published 13 Oct 2018 in math.DG

Abstract: B\"or\"oczky, Lutwak, Yang and Zhang recently proved the log-Brunn-Minkowski inequality which is stronger than the classical Brunn-Minkowski inequality for two origin-symmetric convex bodies in the plane. This paper establishes the log-Brunn-Minkowski, log-Minkowski, $L_p$-Minkowski and $L_p$-Brunn-Minkowski inequalities for two convex bodies in $\mathbb{R}3$.

Summary

We haven't generated a summary for this paper yet.