Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning multiple order parameters with interpretable machines (1810.05538v4)

Published 11 Oct 2018 in cond-mat.stat-mech, cond-mat.str-el, and physics.comp-ph

Abstract: Machine-learning techniques are evolving into a subsidiary tool for studying phase transitions in many-body systems. However, most studies are tied to situations involving only one phase transition and one order parameter. Systems that accommodate multiple phases of coexisting and competing orders, which are common in condensed matter physics, remain largely unexplored from a machine-learning perspective. In this paper, we investigate multiclassification of phases using support vector machines (SVMs) and apply a recently introduced kernel method for detecting hidden spin and orbital orders to learn multiple phases and their analytical order parameters. Our focus is on multipolar orders and their tensorial order parameters whose identification is difficult with traditional methods. The importance of interpretability is emphasized for physical applications of multiclassification. Furthermore, we discuss an intrinsic parameter of SVM, the bias, which allows for a special interpretation in the classification of phases, and its utility in diagnosing the existence of phase transitions. We show that it can be exploited as an efficient way to explore the topology of unknown phase diagrams where the supervision is entirely delegated to the machine.

Summary

We haven't generated a summary for this paper yet.