Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Kernel Derivative Approximation with Random Fourier Features (1810.05207v3)

Published 11 Oct 2018 in stat.ML, cs.LG, and math.PR

Abstract: Random Fourier features (RFF) represent one of the most popular and wide-spread techniques in machine learning to scale up kernel algorithms. Despite the numerous successful applications of RFFs, unfortunately, quite little is understood theoretically on their optimality and limitations of their performance. Only recently, precise statistical-computational trade-offs have been established for RFFs in the approximation of kernel values, kernel ridge regression, kernel PCA and SVM classification. Our goal is to spark the investigation of optimality of RFF-based approximations in tasks involving not only function values but derivatives, which naturally lead to optimization problems with kernel derivatives. Particularly, in this paper, we focus on the approximation quality of RFFs for kernel derivatives and prove that the existing finite-sample guarantees can be improved exponentially in terms of the domain where they hold, using recent tools from unbounded empirical process theory. Our result implies that the same approximation guarantee is attainable for kernel derivatives using RFF as achieved for kernel values.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bharath K. Sriperumbudur (35 papers)
  2. Zoltan Szabo (39 papers)
Citations (11)