Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some remarks on Birkhoff-James orthogonality of linear operators (1810.04845v1)

Published 11 Oct 2018 in math.FA

Abstract: We study Birkhoff-James orthogonality of compact (bounded) linear operators between Hilbert spaces and Banach spaces. Applying the notion of semi-inner-products in normed linear spaces and some related geometric ideas, we generalize and improve some of the recent results in this context. In particular, we obtain a characterization of Euclidean spaces and also prove that it is possible to retrieve the norm of a compact (bounded) linear operator (functional) in terms of its Birkhoff-James orthogonality set. We also present some best approximation type results in the space of bounded linear operators.

Summary

We haven't generated a summary for this paper yet.