Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the cover time of dense graphs (1810.04772v2)

Published 10 Oct 2018 in math.CO and cs.DM

Abstract: We consider arbitrary graphs $G$ with $n$ vertices and minimum degree at least $\delta n$ where $\delta>0$ is constant. If the conductance of $G$ is sufficiently large then we obtain an asymptotic expression for the cover time $C_G$ of $G$ as the solution to an explicit transcendental equation. Failing this, if the mixing time of a random walk on $G$ is of a lesser magnitude than the cover time, then we can obtain an asymptotic deterministic estimate via a decomposition into a bounded number of dense sub-graphs with high conductance. Failing this we give a deterministic asymptotic (2+o(1))-approximation of $C_G$.

Summary

We haven't generated a summary for this paper yet.