Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Core-Periphery Structures by Surprise (1810.04717v3)

Published 10 Oct 2018 in physics.soc-ph and cs.SI

Abstract: Detecting the presence of mesoscale structures in complex networks is of primary importance. This is especially true for financial networks, whose structural organization deeply affects their resilience to events like default cascades, shocks propagation, etc. Several methods have been proposed, so far, to detect communities, i.e. groups of nodes whose connectivity is significantly large. Communities, however do not represent the only kind of mesoscale structures characterizing real-world networks: other examples are provided by bow-tie structures, core-periphery structures and bipartite structures. Here we propose a novel method to detect statistically-signifcant bimodular structures, i.e. either bipartite or core-periphery ones. It is based on a modification of the surprise, recently proposed for detecting communities. Our variant allows for bimodular nodes partitions to be revealed, by letting links to be placed either 1) within the core part and between the core and the periphery parts or 2) just between the (empty) layers of a bipartite network. From a technical point of view, this is achieved by employing a multinomial hypergeometric distribution instead of the traditional (binomial) hypergeometric one; as in the latter case, this allows a p-value to be assigned to any given (bi)partition of the nodes. To illustrate the performance of our method, we report the results of its application to several real-world networks, including social, economic and financial ones.

Citations (25)

Summary

We haven't generated a summary for this paper yet.