Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra (1810.04076v1)

Published 9 Oct 2018 in math.AP

Abstract: We study the Cauchy problem for fractional Schr\"odinger equation with cubic convolution nonlinearity ($i\partial_t u - (-\Delta){\frac{\alpha}{2}}u\pm (K\ast |u|2) u =0$) with Cauchy data in the modulation spaces $M{p,q}(\mathbb R{d}).$ For $K(x)= |x|{-\gamma}$ $ (0< \gamma< \text{min} {\alpha, d/2})$, we establish global well-posedness results in $M{p,q}(\mathbb R{d}) (1\leq p \leq 2, 1\leq q < 2d/ (d+\gamma))$ when $\alpha =2, d\geq 1$, and with radial Cauchy data when $d\geq 2, \frac{2d}{2d-1}< \alpha < 2. $ Similar results are proven in Fourier algebra $\mathcal{F}L1(\mathbb Rd) \cap L2(\mathbb Rd).$

Summary

We haven't generated a summary for this paper yet.