Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient flows and Evolution Variational Inequalities in metric spaces. I: structural properties (1810.03939v1)

Published 9 Oct 2018 in math.FA, math.AP, math.DG, math.MG, and math.NA

Abstract: This is the first of a series of papers devoted to a thorough analysis of the class of gradient flows in a metric space $(X,\mathsf{d})$ that can be characterized by Evolution Variational Inequalities. We present new results concerning the structural properties of solutions to the $\mathrm{EVI}$ formulation, such as contraction, regularity, asymptotic expansion, precise energy identity, stability, asymptotic behaviour and their link with the geodesic convexity of the driving functional. Under the crucial assumption of the existence of an $\mathrm{EVI}$ gradient flow, we will also prove two main results: the equivalence with the De Giorgi variational characterization of curves of maximal slope and the convergence of the Minimizing Movement-JKO scheme to the $\mathrm{EVI}$ gradient flow, with an explicit and uniform error estimate of order $1/2$ with respect to the step size, independent of any geometric hypothesis (such as upper or lower curvature bounds) on $\mathsf{d}$. In order to avoid any compactness assumption, we will also introduce a suitable relaxation of the Minimizing Movement algorithm obtained by the Ekeland variational principle, and we will prove its uniform convergence as well.

Summary

We haven't generated a summary for this paper yet.