Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-calibration cVEP BCI using word prediction: a proof of concept (1810.03428v1)

Published 21 Sep 2018 in cs.HC and q-bio.NC

Abstract: Brain Computer Interfaces (BCIs) based on visual evoked potentials (VEP) allow for spelling from a keyboard of flashing characters. Among VEP BCIs, code-modulated visual evoked potentials (c-VEPs) are designed for high-speed communication . In c-VEPs, all characters flash simultaneously. In particular, each character flashes according to a predefined 63-bit binary sequence (m-sequence), circular-shifted by a different time lag. For a given character, the m-sequence evokes a VEP in the electroencephalogram (EEG) of the subject, which can be used as a template. This template is obtained during a calibration phase at the beginning of each session. Then, the system outputs the desired character after a predefined number of repetitions by estimating its time lag with respect to the template. Our work avoids the calibration phase, by extracting from the VEP relative lags between successive characters, and predicting the full word using a dictionary.

Citations (1)

Summary

We haven't generated a summary for this paper yet.