Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Reinforcement Evolutionary Learning Method for self-learning (1810.03198v1)

Published 7 Oct 2018 in cs.LG, cs.NE, and stat.ML

Abstract: In statistical modelling the biggest threat is concept drift which makes the model gradually showing deteriorating performance over time. There are state of the art methodologies to detect the impact of concept drift, however general strategy considered to overcome the issue in performance is to rebuild or re-calibrate the model periodically as the variable patterns for the model changes significantly due to market change or consumer behavior change etc. Quantitative research is the most widely spread application of data science in Marketing or financial domain where applicability of state of the art reinforcement learning for auto-learning is less explored paradigm. Reinforcement learning is heavily dependent on having a simulated environment which is majorly available for gaming or online systems, to learn from the live feedback. However, there are some research happened on the area of online advertisement, pricing etc where due to the nature of the online learning environment scope of reinforcement learning is explored. Our proposed solution is a reinforcement learning based, true self-learning algorithm which can adapt to the data change or concept drift and auto learn and self-calibrate for the new patterns of the data solving the problem of concept drift. Keywords - Reinforcement learning, Genetic Algorithm, Q-learning, Classification modelling, CMA-ES, NES, Multi objective optimization, Concept drift, Population stability index, Incremental learning, F1-measure, Predictive Modelling, Self-learning, MCTS, AlphaGo, AlphaZero

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube