Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposition of completely symmetric states states (1810.03125v2)

Published 7 Oct 2018 in quant-ph and math.OC

Abstract: In this paper, we consider a subclass of quantum states in the multipartite system, namely, the supersymmetric states. We investigate the problem whether they admit the symmetrically separable decomposition, i.e., each term in this decomposition is a supersymmetric pure product state $|x,x\rangle\langle x,x|$, which are called S-separable. We conjecture that any supersymmetric states are S-separable and we prove that this conjecture holds when the rank is less than or equal to 3 or $N$. Moreover, we propose another weaker conjecture that any separable supersymmetric states are S-separable. It was proved to be true when the rank is less than or equal to $4$ or $N+1$. We also propose a numerical algorithm which is able to detect S-separability. Besides, we analysis the convergence behavior of this algorithm. Some numerical examples are tested to show the effectiveness of the algorithm.

Summary

We haven't generated a summary for this paper yet.