Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

A Logic-Based Mixed-Integer Nonlinear Programming Model to Solve Non-Convex and Non-Smooth Economic Dispatch Problems: An Accuracy Analysis (1810.02608v2)

Published 5 Oct 2018 in math.OC

Abstract: This paper presents a solver-friendly logic-based mixed-integer nonlinear programming model (LB-MINLP) to solve economic dispatch (ED) problems considering disjoint operating zones and valve-point effects. A simultaneous consideration of transmission losses and logical constraints in ED problems causes difficulties either in the linearization procedure, or in handling via heuristic-based approaches, and this may result in outcome violation. The non-smooth terms can make the situation even worse. On the other hand, non-convex nonlinear models with logical constraints are not solvable using the existing nonlinear commercial solvers. In order to explain and remedy these shortcomings, we proposed a novel recasting strategy to overcome the hurdle of solving such complicated problems with the aid of the existing nonlinear solvers. The proposed model can facilitate the pre-solving and probing techniques of the commercial solvers by recasting the logical constraints into the mixed-integer terms of the objective function. It consequently results in a higher accuracy of the model and better computational efficiency. The acquired results demonstrated that the LB-MINLP model, compared to the existing (heuristic-based and solver-based) models in the literature, can easily handle the non-smooth and nonlinear terms and achieve an optimal solution much faster and without any outcome violation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.