Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable Processes (1810.02606v1)

Published 5 Oct 2018 in physics.plasm-ph and cond-mat.stat-mech

Abstract: The~numerical solutions to a non-linear Fractional Fokker--Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The~aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where L\'{e}vy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable L\'{e}vy distribution as solutions to the FFP equation. The~statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The~transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.

Summary

We haven't generated a summary for this paper yet.