Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov Properties of Discrete Determinantal Point Processes (1810.02294v2)

Published 4 Oct 2018 in math.ST, stat.ML, stat.OT, and stat.TH

Abstract: Determinantal point processes (DPPs) are probabilistic models for repulsion. When used to represent the occurrence of random subsets of a finite base set, DPPs allow to model global negative associations in a mathematically elegant and direct way. Discrete DPPs have become popular and computationally tractable models for solving several machine learning tasks that require the selection of diverse objects, and have been successfully applied in numerous real-life problems. Despite their popularity, the statistical properties of such models have not been adequately explored. In this note, we derive the Markov properties of discrete DPPs and show how they can be expressed using graphical models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.