Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concept-drifting Data Streams are Time Series; The Case for Continuous Adaptation (1810.02266v1)

Published 4 Oct 2018 in cs.LG and stat.ML

Abstract: Learning from data streams is an increasingly important topic in data mining, machine learning, and artificial intelligence in general. A major focus in the data stream literature is on designing methods that can deal with concept drift, a challenge where the generating distribution changes over time. A general assumption in most of this literature is that instances are independently distributed in the stream. In this work we show that, in the context of concept drift, this assumption is contradictory, and that the presence of concept drift necessarily implies temporal dependence; and thus some form of time series. This has important implications on model design and deployment. We explore and highlight the these implications, and show that Hoeffding-tree based ensembles, which are very popular for learning in streams, are not naturally suited to learning \emph{within} drift; and can perform in this scenario only at significant computational cost of destructive adaptation. On the other hand, we develop and parameterize gradient-descent methods and demonstrate how they can perform \emph{continuous} adaptation with no explicit drift-detection mechanism, offering major advantages in terms of accuracy and efficiency. As a consequence of our theoretical discussion and empirical observations, we outline a number of recommendations for deploying methods in concept-drifting streams.

Citations (12)

Summary

We haven't generated a summary for this paper yet.