Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Algebraic Geometry Compiling Framework for Adiabatic Quantum Computations (1810.01440v1)

Published 2 Oct 2018 in quant-ph, cs.IT, cs.SC, math.AG, and math.IT

Abstract: Adiabatic Quantum Computing (AQC) is an attractive paradigm for solving hard integer polynomial optimization problems. Available hardware restricts the Hamiltonians to be of a structure that allows only pairwise interactions. This requires that the original optimization problem to be first converted -- from its polynomial form -- to a quadratic unconstrained binary optimization (QUBO) problem, which we frame as a problem in algebraic geometry. Additionally, the hardware graph where such a QUBO-Hamiltonian needs to be embedded -- assigning variables of the problem to the qubits of the physical optimizer -- is not a complete graph, but rather one with limited connectivity. This "problem graph to hardware graph" embedding can also be framed as a problem of computing a Groebner basis of a certain specially constructed polynomial ideal. We develop a systematic computational approach to prepare a given polynomial optimization problem for AQC in three steps. The first step reduces an input polynomial optimization problem into a QUBO through the computation of the Groebner basis of a toric ideal generated from the monomials of the input objective function. The second step computes feasible embeddings. The third step computes the spectral gap of the adiabatic Hamiltonian associated to a given embedding. These steps are applicable well beyond the integer polynomial optimization problem. Our paper provides the first general purpose computational procedure that can be used directly as a $translator$ to solve polynomial integer optimization. Alternatively, it can be used as a test-bed (with small size problems) to help design efficient heuristic quantum compilers by studying various choices of reductions and embeddings in a systematic and comprehensive manner. An added benefit of our framework is in designing Ising architectures through the study of $\mathcal Y-$minor universal graphs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.