Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixing patterns and individual differences in networks (1810.01432v2)

Published 2 Oct 2018 in cs.SI and physics.soc-ph

Abstract: We study mixing patterns in networks, meaning the propensity for nodes of different kinds to connect to one another. The phenomenon of assortative mixing, whereby nodes prefer to connect to others that are similar to themselves, has been widely studied, but here we go further and examine how and to what extent nodes that are otherwise similar can have different preferences. Many individuals in a friendship network, for instance, may prefer friends who are roughly the same age as themselves, but some may display a preference for older or younger friends. We introduce a network model that captures this behavior and a method for fitting it to empirical network data. We propose metrics to characterize the mean and variation of mixing patterns and show how to infer their values from the fitted model, either using maximum-likelihood estimates of model parameters or in a Bayesian framework that does not require fixing any parameters.

Citations (21)

Summary

We haven't generated a summary for this paper yet.