Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on Parallel Preconditioning for All-At-Once Evolutionary PDEs (1810.00615v1)

Published 1 Oct 2018 in math.NA

Abstract: McDonald, Pestana and Wathen (SIAM J. Sci. Comput. 40(2), pp. A2012-A1033, 2018) present a method for preconditioning of time-dependent PDEs via approximation by a nearby time-periodic problem, that is, they employ circulant-related matrices as preconditioners for the non-symmetric block Toeplitz matrices which arise from an all-at-once formulation. They suggest that such an approach might be efficiently implemented in parallel. In this short article, we present parallel numerical results for their preconditioner which exhibit strong scaling. We also extend their preconditioner via a Neumann series approach, which also allows for efficient parallel execution. Our simple implementation (in C++ and MPI) is available at the Git repository PARALAAOMPI. https://github.com/anthonyjamesgoddard/PARALAAOMPI

Summary

We haven't generated a summary for this paper yet.