Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

An infinite family of axial algebras (1810.00590v1)

Published 1 Oct 2018 in math.RA and math.GR

Abstract: Axial algebras are non-associative algebras generated by semisimple idempotents, known as axes, that all obey a fusion rule. Axial algebras were introduced by Hall, Rehren and Shpectorov as a generalisation of the axioms of Majorana theory, which was in turn introduced by Ivanov as an axiomatisation of certain properties of the 2A-axes of the Griess algebra. Axial algebras of Monster type are axial algebras whose axes obey the Monster, or Majorana, fusion rule. We construct an axial algebra of Monster type $M_{4A}$ over the polynomial ring $\mathbb{R}[t]$ that is generated by six axes whose Miyamoto involutions generate an elementary abelian group of order $4$. This construction automatically provides an infinite-parameter family ${M(t)}{t \in \mathbb{R}}$ of axial algebras of Monster type each of which admit a unique Frobenius form. Moreover, we show that this form on $M(t)$ is positive definite if and only if $0 < t < \frac{1}{6}$ and also satisfies Norton's inequality if and only if $0 \leq t \leq \frac{1}{6}$. Finally, we show that the $4A$ axes of $M{4A}$ obey a $C_2 \times C_2$-graded fusion rule giving a new infinite family of fusion rules.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)