Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Gaussian process surrogates for Bayesian inference (1809.10784v1)

Published 27 Sep 2018 in stat.ML and cs.LG

Abstract: We present an adaptive approach to the construction of Gaussian process surrogates for Bayesian inference with expensive-to-evaluate forward models. Our method relies on the fully Bayesian approach to training Gaussian process models and utilizes the expected improvement idea from Bayesian global optimization. We adaptively construct training designs by maximizing the expected improvement in fit of the Gaussian process model to the noisy observational data. Numerical experiments on model problems with synthetic data demonstrate the effectiveness of the obtained adaptive designs compared to the fixed non-adaptive designs in terms of accurate posterior estimation at a fraction of the cost of inference with forward models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.