Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Distance-based Framework for Gaussian Processes over Probability Distributions (1809.09193v1)

Published 24 Sep 2018 in cs.SY

Abstract: Gaussian processes constitute a very powerful and well-understood method for non-parametric regression and classification. In the classical framework, the training data consists of deterministic vector-valued inputs and the corresponding (noisy) measurements whose joint distribution is assumed to be Gaussian. In many practical applications, however, the inputs are either noisy, i.e., each input is a vector-valued sample from an unknown probability distribution, or the probability distributions are the inputs. In this paper, we address Gaussian process regression with inputs given in form of probability distributions and propose a framework that is based on distances between such inputs. To this end, we review different admissible distance measures and provide a numerical example that demonstrates our framework.

Citations (5)

Summary

We haven't generated a summary for this paper yet.